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Abstract— Production forecasting using Decline curve is common but limited in accuracy. The Exponential, Harmonic and Hy-

perbolic declines originated by J.J. Arps are three main decline profile types widely used in the industry. Exponential and Har-

monic curves are more common than the hyperbolic ones largely because of the ease of fitting oil and gas production profiles 

with the earlier curves. However, Hyperbolic is the principal Decline curve equation while Exponential and Harmonic, which rare-

ly occur, are special cases of the general Arps’ Decline curve.  The difficulty in Hyperbolic fit is in the prediction of the Decline 

exponent.  

 

The methods used to fit hyperbolic curves today over oil and gas decline profiles are time consuming computer programs requir-

ing multiple iterations. These fits are not exact hyperbolic representations because of the numerical truncations that are inherent 

in the programs. Numerical approximations were used because there were no known linear forms that fitted the hyperbolic de-

cline equation from real production data. This paper shows a rate time linearized form of Hyperbolic Decline. The novel form was 

found to be a better representation of the hyperbolic form than those from other known hyperbolic programs. 

 

It should be noted that the linear forms presented here only reproduces the  Hyperbolic Decline form but cannot account for the 

decline pattern exhibited by wells due to drastic changes in reservoir fluid or rock properties like Gas-oil-ratio, water cut, porosity, 

permeability and changes caused by introduction of Artificial Lift or enhanced recovery scheme. The rate-rate-derivative time 

linear form only worked for a smooth data with a defined hyperbolic decline pattern while the decline constant harmonization 

method is used to fit any other data that cannot be fit with the former.  
 

Index Terms— Decline curve analysis, Hyperbolic decline pattern, Linear rate-rate-derivative time plots, Natural reservoir pres-

sure, Performance history, Production forecast, Reserve estimation. 
.   

——————————      —————————— 

1 INTRODUCTION                                                                     

Oil and gas production rates usually decline as a func-
tion of time as natural reservoir pressure diminishes. 
Fitting a line through the performance history and as-
suming this same line trends similarly into the future 
forms the basis for the decline curve analysis (DCA) 
concept. Decline Curve Analysis is not an exact sci-
ence, but a way to mimic production trend as produc-
tion rate decreases. The usefulness of a decline curve 
tool lies in its ability to fit the decline trend, forecast 
with some measure of accuracy, the future trend and 
estimate reserves with negligible error margin. The 
basic assumption in this procedure is that whatever 
causes controlled the trend of a curve in the past will 
continue to govern its trend in the future in a uniform 
manner. 
 
Arps (1945 and1956) established the foundation for 
decline curve analysis by collecting these ideas into a 
comprehensive set of line equations defining exponen-
tial, hyperbolic and harmonic curves.  
Brons (1963) and Fetkovich (1983) demonstrated that 
the DCA is more than just an empirical curve fit by 
applying the constant pressure solution to the diffusiv-
ity equation to show that the exponential decline curve 
actually reflects single phase, incompressible fluid 
production from a closed reservoir.  
M.J Fetkovich, (1980 and 1983), developed set of type 
curves to enhance application of DCA. He established 
exact methods of fitting Hyperbolic Decline curves by 

type curve matching using discreet points of decline 
exponents. The major limitation is that it does not de-
termine the unique decline exponent for any given de-
cline trend. It is however presently relied upon as one 
of the best methods for estimating decline exponent. 
 
The general aim of DCA is to model production histo-
ry with the equation of a straight line. However, there 
is no straight-line form of the hyperbolic decline equa-
tion documented in the literatures of DCA. This point 
is further underscored by the fact that there are a lot of 
programs and subroutines that fit hyperbolic decline 
profiles, and none exists for either exponential or har-
monic decline profiles. 
 
The aim of this paper is to establish linear forms of 
Hyperbolic decline that can be used to fit decline 
trend. This will simplify the hyperbolic decline fitting, 
reduce computer time, and eliminate errors due to ap-
proximations. Furthermore, it would provide a unique 
linear form whose extrapolate is intrinsic to the fit and 
a perfect representation of hyperbolic profile over the 
decline trend.  
 
It should be noted that the transformed linear forms 
presented in this paper are appearing for the first time 
in the literatures of Engineering and Science at large. 
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2 DECLINE CURVE ANALYSIS 

2.1 ARPS DECLINE CURVE 
 

A great number of studies on production data are 
based on J. J. Arps (1945) decline curve analysis 
which presents the relationship between production 
and time during pseudo-steady state period and is ex-
pressed as: 
 

            (1) 
Where the constants: 

qi = Initial Production rate 

D = Decline constant 

b = Decline exponent 

 

Arps (1956), applied the equation of a hyperbola to 
define three general equations (exponential, hyperbol-
ic and harmonic) to model production declines as fol-
lows 
1. Exponential (Constant percentage) Decline (b = 0) 

 
                              (1a) 

 
 
2. Hyperbolic Decline (0<b<1) : 

          (1) 
3. Harmonic Decline (b=1) : 

          (1b)  

It is easily observed from either binomial approxima-
tion of equations (1) and (1b) and maclaurin series 
approximation that when the product Dt is far less 
than 1, 

          (1c) 
In order to locate a hyperbola in space, the following parame-

ters must be known: 

The starting point on the y axis, 
• Initial rate, ; 

• Initial decline rate, ; and 

• The degree of curvature of the line, b. 
 

. 

2.2 LINEAR FORMS OF ARPS DECLINE EQUATIONS 

The linear forms used to evaluate the constants in Arps De-

cline equation are: 

(i) Exponential Decline: 
    (2) 

(ii) Harmonic Decline 

 

   (3) 

Equations (2) and (3) are easily inferred from the equations 

(1a) & (1b) respectively. 

 

2.3 LINEARIZATION OF THE ARPS HYPERBOLIC DECLINE 

EQUATIONS 

This paper demonstrates that the linear form of hy-
perbolic decline equation could be obtained by com-
bination of a third parameter to the hyperbolic decline 
rate equation (equation (1)). 
 
(i) The linear form of the Hyperbolic Decline present-

ed is a rate-rate derivative-time function – which is 
an equation involving Instantaneous production 
rate decrease with time, Production rate and time. 

(ii) The rate-rate derivative-time function method has 
limited application. It can only be used when the 
Production rate has shown the Decline pattern. 

 

(i) RATE – RATE DERIVATIVE -TIME METHOD 
Predominantly Water driven reservoirs produce at a 
rate which when divided with its derivative (instanta-
neous decline rate with time) is in partial linear varia-
tion with time. These reservoirs are produced by pro-
duction fluid expansion and displacement by another 
fluid. 
 

Hyperbolic decline occurs when the decline rate is no 
longer constant. Hyperbolic decline-curve equations 
estimate a longer production life of the well when 
compared to the exponential decline equation. Hyper-
bolic decline curve corresponds to a value of b in the 
range 0 <b<1.  
• The hyperbolic Decline equation, from equation (1) is given 

by: 

         (1a) 
Where, 

 = current production rate, 

 = initial production rate (start of production) 

 = initial nominal decline rate at  (defined at the same 

time as the initial production rate) 

 = cumulative time since start of production 

 = hyperbolic decline constant  

 

A graphical representation of the hyperbolic decline equation 

Eq. (1a) encompasses the whole range of conditions from ex-

ponential decline (b = 0) to harmonic decline (b = 1), where 

each value of initial rate (qi), initial nominal decline rate ( ), 

and decline exponent (b) produces its own unique curve. 

The rate of decrease in production with time, is expressed as: 

 

             (4) 

Introducing a rate-time function, ,   defined as rate per instan-

taneous rate change with time: 

               (5) 

The transformed straight-line rate time function is then given 

by 

      (6) 

Where      the modified rate time function 

Dt

ieqq 
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A plot of    against t gives a straight line with gradient = b and 

intercept = , the inverse of Decline constant, D as shown in 

fig. 1. Below 

Intercept =                  (6a)       
                   (6b)   

This Implies that, 

                 (6ai)   

And 

                      (6bi) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCATTERED DATA 

Real production data are not often smooth. This has been ex-

plained above by Feilong et al. (2009). It is usually popular 

practice to smoothen these data by a form of averaging meth-

od and picking a set of data representative of the entire data 

by ―eye balling‖ method. All these methods erode the decline 

curve properties and affect the final decline curve fit. 

 

(i) Production rate-time data smoothening 
 

Arithmetic Average Method –This is the simplest method of 

averaging rate and as the name implies, it is the Arithmetic 

mean of the rates within the time frame of interest. Hence rep-

resented in the form, 

 

          (7) 

 

This is also the least accurate of the three smoothening meth-

ods discussed. 

 

Time-weighted rate Average Method –  

 

This involves the use of rate validity time (time a rate was 

prevalent in the data) to calculate the rate representative over 

a given time frame and it is simply, 

 

 

 

 

         (8) 

Proposed rate-time Method 

 

This involves fitting a decline curve straight line approximation 

in equation (1c) below on production rates within a short peri-

od. This straight-line approximation fits all decline (exponen-

tial, harmonic and hyperbolic) profile. The decline rate is not a 

constant but changes with time so that:  

 

        (9) 

 

It should be noted that this equation improves as t approaches 

 and becomes perfect when t =  .These imply that the  

(the intercept of the equation above) is the best representation 

of the periodic flow rate in the time  of the decline profile. 

 

Another quality to be used to validate the set of data is that the 

periodic decline, , will gradually reduce with periodic suc-

cession. This is further discussed in the next section. 

 

 

Decline Constant Harmonization: 

 

The derived linear forms above are very sensitive to scattered 

data and often outputs inconsistent profile (Numerically dis-

persion) that deviate from real data when extrapolated. This 

occurs when the periodic decline constant is not in a sequen-

tial decreasing order. It is therefore necessary to harmonize 

these periodic decline constants and then regenerate a new 

flow rate versus time before fitting the profile. The formulas for 

this harmonization are all derived below. 

 

The hyperbolic Decline equation, Eq. (1) if differentiated gives: 
 

     (10) 

Matching the rate derivative of this equation (9) and equation 

(10) it is deduced that at any stage of the hyperbolic decline, 

the instantaneous decline constant is given by, 

 

 

     (11) 

Adopting a stepwise time incremental value, tp, such that the 

time series below are derived: 

 

   (Series (1)) 

Recalling also that, 

                                  (12) 

Substituting into Eqn. (11) and earanging gives: 

                    (13) 

Generating instantaneous decline constants for every value of 

 gives the series below 

 

(Series (2)) 

The recurring factor in the above series is 

 

     (14) 

 

Fig. 1. Rate-Rate Derivative - Linear Transform Plot derived from a 
family of hyperbolic decline curves 
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If tp is to be chosen such that  

      

             (Condition (1)) 

Since the Arp’s decline exponent b, is within the range:  

0<b<1, then by linear approximation to binomial theorem, the 

right-hand side of equation (14) becomes 

 

                                          

(15) 

 

Hence (series 2) is reduced to 

 

      (Series (3)) 

Series (3) is a geometrical series reproducible by the equation 

below 

 

      

                                (16) 

          (17) 

Therefore a plot of log(Di,n(ntp)) versus n will give a straight line

 

This can be simplified further from condition (1) & (2), above 

and below respectively and the log approximations below. 
,         (Condition (2)) 

 

        (Logarithmic approximation (1)) 

 

 

         (Logarithmic approximation (2)) 

 

 

             (18a) 

 

 

              (18b) 

Again a plot of  versus n will give a straight line 

with intercept as  and slope of . The 

above is a simplified linear form of hyperbolic decline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 1 
TEST DATA (RATE- RATE DERIVATIVE METHODOLOGY) 
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TABLE 3 
TEST DATA (DECLINE CONSTANT HARMONIZATION METHOD) 

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 2 
TEST DATA FIT (RATE- RATE DERIVATIVE METHOD SOLUTION) 

 

Initial rate was taken directly from data as there was a perfect linear fit (R2=1)  

 

Fig. 3. Production rate (BOPD) versus time (Days) hyperbolic fit for 
Table 1. Data and trend extrapolated for 10 years 
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TABLE 5 
PRODUCTION DATA (DECLINE CONSTANT HARMONIZATION METHODOLOGY) 

 

Initial rate was derived by trending the hyperbolic fit to time zero 

TABLE 4 
TEST DATA FIT (DECLINE CONSTANT HARMONIZATION SOLUTION) 

 

Initial rate derived from regression of interval initial rates used in the hyperbolic fit 

 

 

Fig. 4. Estimation of interval initial rate and decline constant 

 

 

Fig. 5.  Log (Din(ntp)) versus n for test data to determine the decline 
constant and decline exponent 

 

 

 

Fig. 6.  Production Rate (BOPD) Versus Time (Days) for Decline Con-
stant Harmonisation on the Test Data and extrapolated for 10 years 
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Rate-rate derivative - time fit 

 

Rate-rate derivative time method of fitting hyperbolic is simpli-

fied and more accurate when a scattered data is smoothened. 

The main source of the error is the production rate data and 

this is further amplified when a derivative of rate with respect 

to time is obtained from such data. However, this is minimized 

when the rate-time data is smoothened as discussed above. 

 

Rate derivative evaluation 

 

The derivative of rate with respect to time is calculated from 

the smoothened data. The numerical difference equation can 

be used to calculate these from rate and time. The most com-

mon of them is the forward difference but backward difference 

equations can also be used. Backward and forward difference 

TABLE 6 
PRODUCTION DATA FIT (DECLINE CONSTANT HARMONIZATION SOLUTION) 

 

Initial rate got from regression of interval initial rates used in hyperbolic fit 

 

 

Fig. 7. Rate/Rate Derivative (Months) Versus Time (Months) and plot 
showed that hyperbolic trend not established from trend and hence 
Decline Constant Harmonization method should be used instead. 

 

 

 

Fig. 8. Estimation of interval initial rate and decline constant. 

 

 

 

Fig. 9. Log (Din(ntp)) versus n for production data to determine the 
decline constant and decline exponent 

. 

 

 

 

Fig. 10. Production Rate (BOPD) Versus Time (Days) for Decline Con-
stant Harmonisation on the Test Data and extrapolated  

. 
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equations have no problem at the first and last node respec-

tively. Central difference, being the least common due to its 

complex methodology, is the most accurate, although extreme 

(first and last) nodes cannot be evaluated. 

 

Decline Constant Harmonization Method fit 

 

The Decline constant Harmonization Method is best used for 

scattered data after smoothening and form the analysis the fit 

error is minimal within the recommended limit. The smaller the 

time interval the lower the error. However, it is important to 

note that the range of data to be fit must be in such that the 

product bDt is less than or equal 0.1. The best way to deter-

mine this is to assume D to be the first value of decline con-

stant during data smoothening and multiply with the absolute 

time. Decline Exponent b, for Arps decline constant is always 

between 0 and 1 hence the Dt product is good enough to se-

lect the data range for the fit.  

 

Initial rate evaluation for scattered data 

 

The derived linear form for rate-derivative-time and the decline 

constant harmonization fits does not allow determination of 

initial rate from the fitting process. It is normally compelling to 

use the first rate as initial rate or derive this from the first peri-

odic fit in the smoothening linear approximation of rate and 

time. However, none of these is entire data representative and 

should not be practiced for the purpose engineering accuracy.  

 

The inability of the derived equations above to determine initial 

production rate is because the methodology that was used to 

derive the linear functions eliminated the initial rate in the final 

equation - even if there was, one could not solve three un-

knowns with two equations. The best meaningful way to de-

termine initial rate, qi used a minimizing error analysis (with 

reference to the smoothened data) in a direct calculation of the 

periodic flow rates. This was achieved by using a goal seek 

function in the excel spread sheet that calculated the different 

periodic flow rates with zero (or approximately zero) total devi-

ation. All these are summarized on the flow chart in Appendix. 

 

It is also important to note that at this region of solution, the 

product of decline exponent, decline constant and time of pro-

duction must not be greater than 0.1 for this solution to be val-

id and at this point it may be good to start a first guess with 

exponentially determined initial rate: 

From Eq. (1) the following is valid: 

 

        (19) 

For the period within which the product bDt will be less than 
0.1, the log approximation (1) at condition (2) will be preva-
lent hence applying these conditions to equation (19), to 
give: 

         (20) 

The above equation is same as the exponential linear form 
in Eq. (2). 
 

CONCLUSION AND RECOMMENDATION 
 
The Rate-Rate derivative-Time linear form of the hyperbolic 
decline curve that was presented in the paper reproduces 
the Arps hyperbolic decline profile. This is only usable for 
non-scattered data because of the need to calculate, nu-
merically, the derivative of the production rate with respect 
to time which, will be inaccurate for scattered data. 
 
Again, this method is limited because the rate of change of 
production rate with time is not a measurable quantity from 
the field.The usefulness of this method is then limited to 
fitting of hyperbolic curve whose trend is already defined 
from the data and the error of fit grows with data dispersion. 
 
A modification of the rate time equation was made to ad-
dress these above challenges especially fitting the scat-
tered data. This was done by fitting the estimated stepwise 
decline constant from the production -time data after har-
monizing the decline constant. The decline constant and 
decline exponent derived from this method, which are de-
terministic, are representative of the data. 
 
The demerit of this method is the inability of the equations 
to predict the initial rate that is representative of the entire 
scattered data. This was largely because the number of 
variables to be determined (by Eq. (3)) are more than the 
resulting systems of equations (Eq. (2)) which is not evalu-
able because of insufficient data. The initial rate evaluation 
was addressed with an iterative methodology which en-
sures minimal deviation errors from the measuredrate-time 
data. 
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